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ABSTRACT 

Several control design techniques including PID, LQG, and 
PPF are investigated for active vibration damping of a 
cantilever beam with uncertain boundary conditions.  Step 
disturbances were used to evaluate the performance of the 
designed controllers.   

NOMENCLATURE 

C Controller or compensator 
E Elastic Modulus (Pa) 
f j  Natural frequency (Hz) 
GA Genetic Algorithm 
I Area Moment of Inertia (m4) 
LQG Linear Quadratic Gaussian  
M End mass (added to beam) (kg) 
P Plant (physical system) 
PID Proportional Integral Derivative 
PPF Positive Position Feedback 
PZT Piezoelectric Transducer 
QFT Quantitative Feedback Theory 
 

ω j Natural frequency of the system (rad/s) 
ζ Damping ratio of the system 
 
Superscript 
T Transpose of Matrix 
 
Analytical Solution Nomenclature 
m Mass per unit length (kg/m) 
l  Length of beam (m) 
w Lateral displacement of beam (m) 
x Distance (axial) down beam (m) 
 

β Solution parameter  
 
LQG Nomenclature 
A Matrix in system’s state space equation 
B Column vector in system’s state space equation 
C Row vector in measurement equation 
J Performance Index 
K Optimal Gain Matrix 
L Observer Gain Matrix 
Q Parameter in cost function  
R Parameter in cost function 

u Control states (input to system) 
v Measured noise 
w Input noise 
x State vector (states of the system) 
x e Estimated state vector 
y Measured states 
 
PID Nomenclature 
b Damping constant 
e Error measurement  
F Resultant controller output  
k  Stiffness 
K d  Derivative gain 
K i Integral gain 
K p Proportional gain 
m Mass 
 
PPF Nomenclature 
b Level of force into the mode of interest  
c Simplification of  “g / b” 
g Controller constant 
q Controller degree of freedom 
u Input to system (out of controller) 
U(s) Laplace transform of u 
x System degree of freedom 
X(s) Laplace transform of x 
 

ω nf Natural frequency of the controller (rad/s) 
ζ  nf Damping ratio of the controller 
 
 
1. INTRODUCTION 

Many structures may change in the course of their operation, 
yet still be required to fulfill their design purpose.  A specific 
example relates to the vibrations experienced by the wings 
on a B52 aircraft.  Without active control, the amplitudes of 
vibration would be unacceptably high while flying at low 
altitudes.  However, since fuel is stored in the wings, the 
vibration characteristics of the aircraft change during the 
course of flight; thus any control architecture must be 
capable of compensating for uncertain system parameters.  
Another example concerns interceptor missiles, which use 
maneuvering thrusters to track a target.  The thrusters cause 



vibrations in the missile body, which affect the tracking 
accuracy of the seeker head.  In addition, the missile body’s 
vibration characteristics change as fuel is consumed. 

The objective of this study is to design, implement, and 
compare active vibration control architectures for a 
cantilevered aluminum beam.  These controllers are also 
compared under the presence of uncertainties by adding end 
mass.  Proportional Integral Derivative (PID), Linear 
Quadratic Gaussian (LQG), and Positive Position Feedback 
(PPF) are the architectures explored in this study.  

A number of references for general control system design 
theory exist, such as [1] and [2].  Also, there are more 
detailed studies on particular controller architectures.  PID 
has a variety of applications and has been used with 
numerous systems.  Kashani discusses applying LQG to a 
flexible plate [3].  For a comparison of PPF (active control) 
and parallel resistor-inductor shunt technique, [4] is a good 
source. 

2. CONTROLS AND CONTROL MODEL DESIGN 

In a simple feedback system, as shown in Figure 2.1, the 
plant is the system to be controlled.   

The controller or compensator, C(s), is designed to force the 
plant P(s) to have a desired response.  The transfer function 
for the system without any feedback is called the open loop 
transfer function.  In the above diagram the open loop 
transfer function is defined as P .  The closed loop 
transfer function from reference input to output is:  
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In a feedback control system, the output is measured by a 
sensor and fed into the controller to influence the controller 
response.  There are numerous control architectures 
available in the design of an effective controller.  The three 
architectures being compared in this study are the following: 
Proportional Integral Derivative (PID), Linear Quadratic 
Gaussian (LQG), and Positive Position Feedback (PPF).   

2.1. PID CONTROL DESIGN 

PID (proportional, integral, derivative) controllers are quite 
popular for their robustness and ease of implementation.  A 
PID controller tracks the system error; its integral; and its 
derivative, applies gains to each of these terms, sums these 
new terms, and outputs the result to the plant.   

2.2. LQG CONTROL DESIGN 

One advantage of state-space optimal control design is that 
it consists of a series of independent steps.  First, the 
definition of a control law allows the resulting closed-loop 
system to attain satisfactory transient response.  If the full 
state of the system is not available, an estimator (sometimes 
called an observer), which computes an estimate of the 
entire state vector when provided with the system’s 
measurements [1], is used.  The final step is to combine the 
control law and the estimator.  Figure 2.2 shows how the 
control law and the estimator are combined to form a 
compensator.  Linear Quadratic Gaussian (LQG) is one type 
of state-space optimal control design.   

Plant 

2.3. PPF CONTROL DESIGN 

Some controller architectures do not require a system model 
in their design.  Positive Position Feedback (PPF) controllers 
are an example of this controller type.  An advantage of PPF 
controllers is that only the resonant frequencies and the 
system’s low-frequency gain are required to design the 
compensator [5].  Advantageously, this controller 
architecture is not sensitive to spillover, where contributions 
from unmodeled modes affect the control of the modes of 
interest.  However, designing a controller for each mode may 
be difficult [6].  A major aspect of concern for all controllers is 
stability.  Friswell and Inman [6] cover stability of PPF in 
detail when applied to single and multiple degree of freedom 
models.  An important characteristic to note is that stability is 
not dependent on the controller damping ratio.   Another 
difference between PPF and most other controllers is that 
the feedback of the output to the controller is positive, 
whereas this feedback is negative in other controllers.  
Figure 2.3 shows the PPF block diagram. 

Output 
Plant

Control 
Input 

Controller Σ 

Reference 

- 

Figure 2.1 – Schematic of a simple feedback system.
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Figure 2.3 – Schematic of PPF feedback system. 
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Figure 2.2 – Schematic of LQG state-space design. 



3. PIEZOELECTRICS 

Piezoelectric materials generate an electric charge 
proportional to applied stress, which makes them a natural 
sensor.  Conversely, piezoelectric materials can be 
effectively used as an actuator, as they deform when an 
electrical charge is applied.  The piezoelectric actuators 
obtained from PCB Piezotronics Inc. (item 713A01) have a 
frequency range of 0 to 50 kHz.  At the 100-v maximum 
voltage the patch can produce approximately 21 N of 
actuation force.  The patch actuator used in this study 
measured 4.3 x 0.84 x 0.05 inches (109 x 21.3 x 1.27 mm).  
When applied in a closed-loop control system, the patch 
actuators develop a canceling force to reduce vibration. 

4. EXPERIMENTAL DESCRIPTION 

The system under consideration is a cantilevered 6061 
Aluminum beam of dimensions 24 x 2 x 0.25 in (61 mm x 
6 mm x 51 mm) with a variable mass at the free end.     

4.1. EXPERIMENTAL CONFIGURATION 

Two piezoelectric patches mounted on opposite sides of the 
beam 140 mm away from the fixed end are used as a sensor 
and actuator. The signal from the sensing piezoelectric patch 
is fed through a voltage divider so the signal conditioning 
hardware is not saturated with the high voltage output. 

The data acquisition setup consists of a National Instruments 
PCI-6052E signal conditioner connected to a real time 
operating system.  Software needed to run the data 
acquisition included MATLAB, Simulink, Real-Time 
Workshop, and a C compiler.  When a test is run, a Simulink 
model is compiled and connected to the real time OS via the 
network using Matlab xPC Target software. 

See Figure 4.1 for a picture of the experimental setup.  
Following are the labeled parts: 
(a) National Instruments PCI-6052E signal conditioner  
(b) Voltage divider 
(c) Piezoelectric Patches (one on each side) 

(d) AVC Instrumentation 790 Series Power Amplifier 

4.2. EXPERIMENTAL PROCEDURE 

System identification tests, finite element results, and closed 
form solutions are compared for three end-mass cases 
(0.00, 64.3, 129 grams).  Using modal data obtained from 
the system identification tests, an estimate of the input to 
output transfer function is produced.  The control design 
consists of comparing results from three different design 
techniques in their ability to reduce vibration in the nominal 
case (no end-mass).  Finally, a stability check in the 
presence of uncertainty (variable end mass) is used to 
determine robustness characteristics of each controller. 

5. ANALYSIS OF BEAM 

To aid in control design, the system’s natural frequencies 
need to be found.  Analytical solution and the finite element 
method can be used to estimate the natural frequencies. The 
natural frequencies can also be measured experimentally. 

5.1. ANALYTICAL SOLUTION 

For the analytical solution (or exact solution), the beam is 
modeled as a continuous system.  See Figure 5.1 for a 
sketch of the analytical model.   

The equation of motion and boundary condition for a beam 

in transverse vibration with end mass can be found in most 
vibration textbooks, i.e. [7].  The boundary conditions are 
applied to the general solution of the equation of motion 
assuming separation of variables, leading to the 
characteristic equation: 
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Figure 5.1 – Sketch of analytical model of
the beam. 
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Solving the characteristic equation for ω gives the natural 
frequencies of the model of the beam.  Appropriate values 
can be substituted for M to vary the end mass.  The results 
from the analytical solution are tabulated in Section 5.4. 

5.2. FINITE ELEMENT SOLUTION 

To evaluate the mode shapes and frequencies with finite 
element tools, Abaqus CAE is used.  Within Abaqus, a 
model with the same measurements as the actual beam is 
constructed.  Material properties are selected in accord with 
the physical system (Aluminum 6061), and a clamped 

Figure 4.1 – Picture of experimental setup 

(b.) 

 (a.) 

(c.) 



boundary condition is imposed on the rear face.  Using a 10-
node Modified Quadratic Tetrahedron mesh (standard 
element library) and 3-D stress analysis, the model is 
evaluated for the first three bending modes of the cantilever.  
The first three mode shapes are shown in Figure 5.1.   

 

5.3. EXPERIMENTAL RESULTS 

To determine the true natural frequencies of the beam, the 
process and system described in Section 4 are used.  
Random excitation is input by one of the piezoelectric 
patches (PZT).  The other PZT is used as a sensor.  The 
frequency response function (FRF) is found from the input 
and output data (time domain).  See Figure 5.2.  The natural 
frequencies of the beam can be extracted from the FRF. 

5.4. COMPARISON OF NATURAL FREQUENCIES 

The natural frequencies of the beam are determined using 
the aforementioned methods.  These methods are applied 
for three different cases: nominal (no end mass), 65-gram 
end mass, and 130-gram end mass.  Table 1 lists the results 
of the beam analysis. 
 

Table 5.1 – The natural frequencies (Hz) for the three cases. 

 f1 f2 f3 
Nominal    

Analytical 9.11 57.1 160 
Abaqus 10.0 62.8 176 
Actual  9.31 55.0 157 

    
65-gram end mass    

Analytical 4.87 43.2 133 
Abaqus 7.20 52.8 157 
Actual  6.56 44.9 138 

    
130-gram end mass    

Analytical 3.71 41.8 132 
Abaqus 5.91 50.2 132 
Actual  5.34 42.6 134 

(a) 

 

6. APPLICATION OF PID CONTROL 
(b) 

The mathematical realization of a PID controller is 
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where e is the error measurement, F is the resultant output, 
and Kp, Ki, and KD are the proportional, integral, and 
derivative gains, respectively.  Differentiating (6.1) once with 
respect to time, 

(c) 
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Figure 5.1 – Mode shapes from FE model: (a) first 
mode, (b) second mode, and (c) third mode. and taking the Laplace transform, 
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the resulting transfer function (F/e) for a PID controller is  
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To pick the optimal gain terms for the controller based on 
frequency and damping criteria, the denominator of the 
closed-loop transfer function of the system is set equal to the 
desired expression in the Laplace domain.  The denominator 
of the closed-loop transfer function is 
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Figure 5.2 – Plot of experimental FRF 



where m, b, and k are the mass, damping, and stiffness 
terms, respectively.  This expression is then set to be equal 
to  

 , (6.5) )2)(10( 22
nnn ss ωζωζω +++

where ζ and ω are the damping and frequencies derived 
from the desired criteria (i.e. settling time, time to rise, etc.).  
The extra root at –10ζω is added to satisfy the third-order 
transfer function denominator.  Adding this extra root has 
very little effect on the desired results, as it lies far above the 
frequencies of interest.  With the equation 
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the PID gains can be determined. 

For the system under consideration, a slightly 
technique is used to determine acceptable PID gain
A Genetic Algorithm (GA) is employed to perturb
solutions and find the fittest combination of gains. 

Genetic Algorithm is a term used to describe a set
used to either maximize or minimize a specific 
which is referred to a ‘fitness function’ [8].  A typ
begins with an initial population of solutions.  The po
is comprised of a specifiable number of members, w
be scalars or vectors.  The GA evaluates the fitness
at each member of the initial population and rec
results.  It then separates the fittest of these memb
discards the others.  The fittest members are 
repopulate the set and are randomly perturbe
specified boundary limits.  The fitnesses of the
members are evaluated and the procedure is repea
specified number of cycles [8]. 

In the case of the cantilever beam, the fitness fu
comprised of three inputs (the PID gains) and on
(settling time).  Built into the function is a sixth order
function approximation based on experimental data
time the fitness function is called, it generates a PID
function based on its inputs and evaluates the 
response of the closed-loop system.  The function
the settling time as the fitness to be minimized. 

7. APPLICATION OF LQG CONTROL 

For this study, a Kalman estimator provides the optim
estimate of the system.  When the Kalman estimator
the method is known as Linear Quadratic Gaussian
The LQG method is a linear optimal full state f
control technique that minimizes the impulse respo
control expenditure in a quadratic sense [3].  G
system of equations: 

  (system)  wBuAxx ++=&
vCxy +=     (measurement),

where A, B, and C are a matrix, column vector and row 
vector in a system’s state space representation.   Variables 
w and v are the process and measurement noise 
respectively.  The steps involved in the design of an LQG 
controller are the following.  First calculate the optimal gain 
matrix K so the state feedback law  minimizes the 
cost function: [1] 

Kxu −=
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where Q and R are cost function parameters, x is the output, 
and u is the input.  Second, use the Kalman filter equation 
[2] to estimate the state x e and calculate the observer gain 
matrix L.  The result is an optimal state estimate that is fed 
back to the system.  Finally, apply the state-feedback and 
observer gains K & L to the system by making the following 
substitutions in equations 7.1.a and 7.1.b:  
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 A = [A-BK-LC]  (7.3.a) 
 B = L (7.3.b) 

C = -K, (7.3.c) 

while setting w and v = 0. 

8. APPLICATION OF PPF CONTROL 

In order to study PPF controllers, the equations used to 
represent the compensator is given by: 
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The simplest way to implement this in Simulink is to use the 
controller’s transfer function (u/x).  Taking the Laplace 
Transform of (8.1) results in the following equation: 
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By applying a PPF controller to a multiple degree of freedom 
system with just one controller input, a beneficial facet 
becomes obvious.  The high frequency response should not 
be fed into a PPF controller.  The controller has a much 
greater effect when this is done. 

Another use of the transfer function is to check stability using 
the Bode plot, as described in Section 2.  To do this, the 
experimental frequency response function (FRF) needs to be 
found, and the transfer function needs to be converted to the 
frequency domain (substitute ωjs = ).  Then, at each 



frequency the experimental FRF and the model of the 
controller in the frequency domain are multiplied together; 
this is the open loop FRF.  Now this can be done in order to 
check the stability for various controller parameters 
( cfnf ,,ςω ).  While the parameters that result in stable 

systems may not function properly when implemented, they 
give a starting point. 

9. COMPARISON OF RESULTS 

For the PID, LQG, and PPF controllers designed, the settling 
times are compared using a 2% criterion.  The time it takes 
for the response to settle within 2% of the maximum 
amplitude defines 2% criterion.  This comparison is first done 
for the nominal system and then for the end mass cases. 

9.1. OUTCOME FOR NOMINAL SYSTEM 

In the nominal case, the uncontrolled settling time was 26 
seconds.  The PID controller proved to be effective, causing 
a 67% reduction in settling time.  Unfortunately, the LQG 
controller did not perform as desired and reduced settling 
time by only 21%.  (See Section 9.3.)  On the other hand, 
the PPF controller proved to be very effective, reducing 
settling time by 87%.  Figure 9.1 shows a comparison of the 
performance of each controller with the same step condition 
applied. 

9.2. DISCUSSION OF ROBUSTNESS 

When checking the controllers’ robustness characteristics, 
the control design for the nominal case is used.  Intentionally 
introduced uncertainty in the form of end masses had 
noticeable effects.  The PID controller proved to be 
marginally stable and unstable for the 65-gram and 130-
gram end mass cases, respectively.  In the 65-gram case, 
the PID controlled system sustains a small amplitude of 
vibration, referred to as a limit cycle, and did not settle to 2% 
of the maximum amplitude within the window of interest (the 
first 30 seconds).  Similarly, the 130-gram end mass 
controlled system entered a limit cycle, and in fact the 
controller caused the beam to repeatedly impact the 
C-clamp.  Figure 9.2 shows the comparison of the 
uncontrolled and controlled response for the PID controller. 
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Figure 9.2 – PID controller comparison for the
(a) 65-gram case and (b) 130 gram case. Controlled 
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The LQG controlled beam showed slightly greater settling 
times for the 65-gram and 130-gram end mass cases.  That 
the system did not show signs of instability with the end 
masses attached was encouraging.  See Figure 9.3 for LQG 

response comparisons. 

(a)  

Surprisingly, the PPF controller did not perform well in the 
presence of uncertainty.  In the 65-gram case, the system 
entered a limit cycle after transients died out near 
14 seconds.  Likewise, in the 130-gram end mass case, the 
system entered a limit cycle and sustained high magnitude 
of vibration.  Figure 9.4 shows response comparisons for the 
PPF controller.     

 Figure 9.1 – Nominal response comparison for 
(a) PID, (b) LQG, and (c) PPF controllers.  
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Figure 9.3 – LQG controller comparison for the
(a) 65-gram case and (b) 130 gram case.  
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9.3. LQG IMPLEMENTATION ISSUES  

A state-space control design with a state observer must be 
observable and controllable.  Observability refers to the 
ability of the controller to estimate a state variable.  A system 
described by the matrices (A,B) can be said to be 
controllable if there exists an unconstrained control u that 
can transfer any initial state x(0) to any other desired 
location x(t) [9].  One can determine controllability by 
checking if the rank of the matrix [B AB A2B …An-1B]  is 
equal to the number of states in the system.  A transfer 
function that described the input to output FRF closely 
through the first seven natural frequencies (11th order) is 
used in the design of an LQG controller.  The state-space 
representation of the 11th order approximation is found to be 
neither controllable nor observable.  Because of this 
problem, a reduced approximation of the transfer function is 
used to create a state space representation.  Because the 
LQG design requires an accurate transfer function, the 
resulting LQG controller performed significantly different than 
anticipated. 

10. SUMMARY 

This study shows that vibration control design for a nominal 
case may not always be sufficient for all structures.  If 
damage occurs, boundary conditions change, material 
properties change, or another perturbation in the system 
occurs, the controller may not work properly, and in some 
cases may cause the system to become unstable.  As fuel 
stored in the wings of a B-52 is used, the vibration 
characteristics will change.  Robustness characteristics must 
be checked to determine if the control design is sufficient in 
the presence of uncertainty.  In addition, if a control system 
is to be designed for multiple, nominally similar systems, 
variability in the population should be considered in the 
control design.   

Recommendations for further research: 
1. Apply robust design methods, such as Quantitative 

Feedback Theory (QFT), to address uncertainty. 
2. Compare effectiveness of piezo patches that apply 

moment and piezo patches that apply an axial force. 
3. Conduct similar experiments on different systems. 
4. Evaluate the effects of saturation. 
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